【题目】已知a、b、c三个实数成等差数列,则直线bx+ay+c=0与抛物线 的相交弦中点的轨迹方程是 .
【答案】x+1=﹣(2y﹣1)2(y≠1)
【解析】解:设直线bx+ay+c=0与抛物线 的交点坐标为A(﹣2y12 , y1),B(﹣2y22 , y2), 把x=﹣2y2代入直线方程bx+ay+c=0得:﹣2by2+ay+c=0,
∴y1y2= ,y1+y2= ,
∵a,b,c成等差数列,∴c=2b﹣a,
∴y1y2= = ﹣1,
设AB的中点为P(x,y),则x=﹣y12﹣y22=﹣(y1+y2)2+2y1y2=﹣ + ﹣2,
y= = ,
∴x=﹣4y2+4y﹣2,即x+1=﹣(2y﹣1)2 ,
由△=a2+8bc=a2+8b(2b﹣a)=a2﹣8ab+16b2=(a﹣4b)2>0得a≠4b,
∴y≠1.
所以答案是:x+1=﹣(2y﹣1)2(y≠1).
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(x+θ)﹣cos cos( ﹣ )(其中A为常数,θ∈(﹣π,0),若实数x1 , x2 , x3满足;①x1<x2<x3 , ②x3﹣x1<2π,③f(x1)=f(x2)=f(x3),则θ的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1 , l2 , 直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+1)﹣x2+(2﹣a)x﹣a(a∈R)若存在唯一的正整数x0 , 使得f(x0)>0,则实数a的取值范围是( )
A.[ , ]
B.( , )
C.( , ]
D.(ln3,ln2+1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com