精英家教网 > 高中数学 > 题目详情
1.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
(1)AC⊥BD           (2)AB与平面BCD成60°的角
(3)△ACD是等边三角形 (4)AB与CD所成的角为60°
正确结论的编号是①③④.

分析BD的中点E,则AEBDCEBD.?从而得到BDAC;AB与平面BCD成45°的角;设正方形边长为a,则AD=DC=aAE=$\frac{\sqrt{2}}{2}$a=EC.从而AC=a;以E为坐标原点,ECEDEA分别为xyz轴建立直角坐标系,利用向量法得到AB与CD所成的角为60°.

解答 解:在①中:取BD的中点E,则AEBDCEBD.?
BD⊥面AEC,BDAC,故①正确;
在②中:∵AE⊥平面BCD,∠ABDAB与面BCD所成的角,
∵AE=BE,∴∠ABD=45°,∴AB与平面BCD成45°的角,故②不正确;
在③中:设正方形边长为a
AD=DC=aAE=$\frac{\sqrt{2}}{2}$a=EC.∴AC=a.?
∴△ACD为等边三角形,故③正确;?
 在④中:以E为坐标原点,ECEDEA分别为xyz轴,建立空间直角坐标系,?
A(0,0,$\frac{\sqrt{2}}{2}$a),B(0,-$\frac{\sqrt{2}}{2}$a,0),D(0,$\frac{\sqrt{2}}{2}$a,0),C($\frac{\sqrt{2}}{2}$a,0,0).??
$\overrightarrow{AB}$=(0,-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a),$\overrightarrow{DC}$=($\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a,0).
cos<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=$\frac{\frac{1}{2}a}{a×a}$=$\frac{1}{2}$.?
∴<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=60°,∴AB与CD所成的角为60°,故④正确.
∴真命题为①③④.?

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心在直线2x-7y+8=0上,且过点A(6,0),B(1,5),直线l的倾斜角为135°,解答下列问题
(1)若直线l的横截距为3,求直线l的方程;
(2)求圆C的一般方程;
(3)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四棱锥A-BCDE的底面是边长为4的正方形,面ABC⊥底面BCDE,且AB=AC=4,则四棱锥A-BCDE外接球的表面积为$\frac{112π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱锥P-ABCD中,AD=2BC,且AD∥BC,点M,N分别是PB,PD中点,平面MNC交PA于Q.
(1)证明:NC∥平面PAB
(2)试确定Q点的位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设极坐标的极点是直角坐标系的原点,极轴是x轴的正半轴,取相同的单位长度,已知直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且α≠kπ+$\frac{π}{2}$,k∈z),圆C的极坐标方程为p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圆C与直线l不相交.
(I)求直线l的普通方程;
(Ⅱ)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a为参数),点P在曲线C1上.求点P到直线1距离的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知sin($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{3}$,则sin2α的值为(  )
A.$\frac{7}{9}$B.$\frac{5}{9}$C.$\frac{1}{3}$D.-$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2x+ax+2.
(1)当a=0时,求函数f(x)的零点;
(2)当a=1时,判断函数f(x)在定义域内的零点的个数并给出代数证明.

查看答案和解析>>

同步练习册答案