分析 先根据定积分的几何意义求出${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$=$\frac{π}{2}$,再根据定积分的法则求出${∫}_{0}^{4}$xdx,问题得以解决.
解答 解:${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$-x)dx=${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$dx-${∫}_{0}^{4}$xdx,
因为y2=1-(x-1)2表示以(1,0)为圆心,以1为半径的圆,
所以${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$表示以(1,0)为圆心,以1为半径的圆的面积一半,
所以${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$=$\frac{π}{2}$,
所以${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$-x)dx=${∫}_{0}^{4}$($\sqrt{1-(x-1)^{2}}$dx-${∫}_{0}^{4}$xdx=$\frac{π}{2}$-$\frac{1}{2}{x}^{2}$|${\;}_{0}^{4}$=$\frac{π}{2}$-8
点评 本题考查了定积分的几何意义,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
室外工作 | 室内工作 | 合计 | |
有呼吸系统疾病 | 150 | ||
无呼吸系统疾病 | 110 | ||
合计 | 200 |
P(Χ2≥k) | 0.050 0.025 0.010 |
k | 3.841 5.024 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com