精英家教网 > 高中数学 > 题目详情
3.若$y={log_{3{a^2}-1}}x$在(0,+∞)内为增函数,且y=a-x也为增函数,则a的取值范围是(  )
A.$(\frac{{\sqrt{3}}}{3},\;\;1)$B.$(0,\;\;\frac{1}{3})$C.$(\frac{{\sqrt{3}}}{3},\;\;\frac{{\sqrt{6}}}{3})$D.$(\frac{{\sqrt{6}}}{3},1\;\;)$

分析 分别根据对数函数和指数函数的单调性建立不等式关系即可求出a的取值范围.

解答 解:∵$y={log_{3{a^2}-1}}x$在(0,+∞)内为增函数,
∴3a2-1>1,解得a<-$\frac{\sqrt{6}}{3}$或a>$\frac{\sqrt{6}}{3}$.
∵y=a-x为增函数,
∴$\frac{1}{a}$>1,解得0<a<1,
综上,a的取值范围是($\frac{\sqrt{6}}{3}$,1).
故选:D.

点评 本题主要考查指数函数和对数函数的图象和性质,要求熟练掌握函数单调性与a的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$,那么M∩N=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤1}C.{x|x<-2}D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式:
(1)log23•log32-log2$\sqrt{2}$;     
(2)(0.125)${\;}^{\frac{1}{3}}$+(-$\frac{7}{8}$)0+8${\;}^{\frac{2}{3}}$+16${\;}^{-(\frac{1}{4})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算下列各式的值:
(1)${9^{\frac{1}{2}}}+{(\frac{3}{5})^0}+{8^{\frac{1}{3}}}$;             
(2)${log_5}25+lg100+ln\sqrt{e}+{2^{{{log}_2}3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|0≤x≤4},B={x|m+1≤x≤1-m},且CRA∩B=B,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“如果一个双曲线的离心率为$\sqrt{2}$,则它的渐近线互相垂直”的否命题为“如果一个双曲线的离心率不为$\sqrt{2}$,则它的渐近线不垂直”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求过点M(4,4),并与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的定义域.
(1)y=lg(1-x)-lg(1+x);
(2)y=$\sqrt{2+l{o}_{\frac{1}{2}}g(x+1)}$;
(3)f(x)=$\frac{\sqrt{{3}^{x}-1}}{lo{g}_{2}(8-x)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若x∈[1,+∞)时,函数f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案