精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln
x-1
2-x
,则f(
11
10
)+f(
6
5
)f(
13
10
)+f(
7
5
)+f(
3
2
)+f(
8
5
)+f(
17
10
)+f(
9
5
)+f(
19
10
)=
 
考点:对数的运算性质
专题:函数的性质及应用
分析:由已知条件得f(
11
10
)+f(
6
5
)f(
13
10
)+f(
7
5
)+f(
3
2
)+f(
8
5
)+f(
17
10
)+f(
9
5
)+f(
19
10
)=ln(
1
9
×
1
4
×
3
7
×
2
3
×1×
3
2
×
7
3
×4×9),由此能求出结果.
解答: 解:∵函数f(x)=ln
x-1
2-x

∴f(
11
10
)+f(
6
5
)f(
13
10
)+f(
7
5
)+f(
3
2
)+f(
8
5
)+f(
17
10
)+f(
9
5
)+f(
19
10

=ln(
1
9
×
1
4
×
3
7
×
2
3
×1×
3
2
×
7
3
×4×9)
=ln1=0.
故答案为:0.
点评:本题考查函数值的求法,注意对数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna,a>1.
(1)求证函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-b+
1
b
|-3有四个零点,求b的取值范围;
(3)若对于任意的x∈[-1,1]时,都有f(x)≤e2-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:①当x∈[1,e2]时,f(x)=lnx;②当x∈[
1
e2
,1)时,f(x)•f(
1
x
)=1.若函数g(x)=f(x)-ax,x∈[
1
e2
,e2]有两个不同零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
-
1
3x
与g(x)=a(x2+x-a2-a)同时满足条件:
①{x|f(x)≥0}⊆{x|g(x)<0};
②?x0∈(-∞,-1)使得f(x0)g(x0)<0成立.
则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+1,x>0
-x2-4x
+a,x≤0
在点(1,2)处的切线与f(x)的图象有三个公共点,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b均为正的常数,且x>0,y>0,
a
x
+
b
y
=1,则x+y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=-f(x),且当x∈[-1,0]时,f(x)=2x,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α+β)=
4
5
,cos(α-β)=-
4
5
且(α+β)∈(
2
,2π),(α-β)∈(
π
2
,π),则sin2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)=
1
2
(x+|x|),g(x)=
x2 (x≥0)
x (x<0)
,f[g(1)]=
 

查看答案和解析>>

同步练习册答案