精英家教网 > 高中数学 > 题目详情

【题目】如图是边长为的正方形,平面与平面所成角为

Ⅰ)求证:平面

Ⅱ)求二面角的余弦值.

Ⅲ)设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.

【答案】(1)见解析(2)(3)是线段靠近点的三等分点.

【解析】试题分析:(1)由正方形性质得,由平面,再根据线面垂直判定定理得平面(2)利用空间向量求二面角:先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求向量夹角,最后根据二面角与向量夹角关系求二面角(3)设点坐标,根据平面,列方程解得点坐标,再确定位置

试题解析:证明:∵平面平面

又∵是正方形,

平面

)∵两两垂直,所以建立如图空间直角坐标系

与平面所成角为,即

,可知:

设平面的法向量为,则

,即

,则

因为平面,所以为平面的法向量,

所以

因为二面角为锐角,

故二面角的余弦值为

依题意得,设

平面

,即,解得:

∴点的坐标为

此时

∴点是线段靠近点的三等分点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数, ,且对任意恒成立,记的前项和为.

(1)若,求的值;

(2)证明:对任意正实数 成等比数列;

(3)是否存在正实数,使得数列为等比数列.若存在,求出此时的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中, 所对的边分别为,且.

(1)求角的大小;

(2)若 的中点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 为坐标原点, 是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点,使得为定值,则该定值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中)在点处的切线斜率为1.

(1)用表示

(2)设,若对定义域内的恒成立,求实数的取值范围;

(3)在(2)的前提下,如果,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于 两点, 中点.

)当垂直时,求证: 过圆心

)当,求直线的方程.

)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃,梅花,方片以及黑桃,让明、小红、小张、小李四个人进行猜测:

小明说:第1个盒子里面放的是梅花,第3个盒子里面放的是方片

小红说:第2个盒子里面饭的是梅花,第3个盒子里放的是黑桃

小张说:第4个盒子里面放的是黑桃,第2个盒子里面放的是方片

小李说:第4个盒子里面放的是红桃,第3个盒子里面放的是方片

老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( )

A. 红桃或黑桃 B. 红桃或梅花

C. 黑桃或方片 D. 黑桃或梅花

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一次全市高中男生身高统计调查数据显示:全市名男生的身高服从正态分布.现从某学校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分组: ,…, ,得到的频率分布直方图如图所示.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;

(Ⅱ)求这名男生身高在以上(含)的人数;

(Ⅲ)在这名男生身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全市前名的人数记力,求的数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有最大值 ,且 的导数.

)求的值;

)证明:当 时,

查看答案和解析>>

同步练习册答案