精英家教网 > 高中数学 > 题目详情
若定义在R上的偶函数在区间[0,1]上是增函数,且满足f(x+1)f(x)=2.则(  )
A、f(-
5
2
)<f(0)<f(3)
B、f(0)<f(-
5
2
)<f(3)
C、f(0)<f(3)<f(-
5
2
D、f(3)<f(0)<f(-
5
2
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:由f(x+1)f(x)=2可推出f(x)=f(x+2);由结合奇偶性可得f(-
5
2
)=f(
1
2
),f(3)=f(1);从而由单调性判断.
解答: 解:∵f(x+1)f(x)=2,
∴f(x+2)f(x+1)=2;
故f(x)=f(x+2);
故f(-
5
2
)=f(-
1
2
)=f(
1
2
);
f(3)=f(1);
又∵在区间[0,1]上是增函数,
∴f(0)<f(
1
2
)<f(1);
即f(0)<f(-
5
2
)<f(3);
故选B.
点评:本题考查了抽象函数的性质的判断与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}中,a3=0,Sn是数列{an}的前n项和,则下列式子成立的是(  )
A、S3=0
B、S4=0
C、S5=0
D、S9=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,2,4,6},B={x|3<x<7},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,(2
a
-3
b
)•(2
a
+
b
)=-12.
(1)求
a
b
的夹角θ;                 
(2)求|
a
+2
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5)
(1)求m的值,并确定f(x)的解析式.
(2)若y=loga[f(x)-ax](a>0,且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

中华人民共和国关于《环境空气质量指数(AQI)技术规定(试行)》(HJ633-2012)中,关于空气质量指数划分如下表所示:
AQI0~5051~100101~150151~200201~300>300
级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级
类别轻度污染中度污染重度污染严重污染
某市为了监测该市的空气质量指数,抽取一年中n天的数据进行分析,得到如下频率分布表及频率分布直方图:
分组频数频率
[0,50)x0.06
[50,100)100.2
{100,150)20y
[150,200)150.3
[200,250)20.04
合计n1
(Ⅰ)求n、x、y和p的值;
(Ⅱ)利用样本估计总体的思想,估计该市一年中空气质量指数的平均数为多少?
(Ⅲ)该市政府计划通过对环境进行综合治理,使得今后Ⅲ的空气质量指数比上一年降低5%,问至少经过多少年后该市的空气质量可以达到优良水平?
(参考数据:0.954≈0.815,0.955≈0.774)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱柱ABC-A1B1C1中,AA1=2AB=2AC=2.∠A1AB=∠A1AC=∠BAC=60°,设
AB
=
a
AC
=
b
AA
=
c

(1)试用向量
a
b
c
表示
BC1
,并求|
BC1
|;
(2)在平行四边形BB1C1C内是否存在一点O,使得A1O⊥平面BB1C1C,若不存在,请说明理由;若存在,试确定O点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P为△ABC所在平面内一点,若
CP
•(
CA
-
CB
)=0,则直线CP一定经过△ABC的(  )
A、内心B、垂心C、外心D、重心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
x-y≤2
x+y≤4
x≤2
,则z=2x+y的最大值是(  )
A、4B、6C、7D、8

查看答案和解析>>

同步练习册答案