精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.
(I)求点P到平面ABCD的距离,
(II)求面APB与面CPB所成二面角的大小.

【答案】分析:(1)侧面PAD为边长等于2的正三角形,底面ABCD为菱形,△PAD与菱形ABCD有公共边AD,所以△PAD≌△ADB≌△CDB,故作PO⊥平面ABCD,垂足为点O.连接OB、OA、OD、OB与AD交于点E,连接PE.于是OB平分AD,点E为AD的中点,所以PE⊥AD.由此知∠PEB为面PAD与面ABCD所成二面角的平面角,为120°,所以PO=PE•sin60°=
(2)解法一:
建立直角坐标系,其中O为坐标原点,x轴平行于DA,OB为y轴,OP为z轴,连接AG.
则:P(0,0,),B(0,,0),PB的中点G的坐标为(0,),A(1,,0),C(-2,,0).根据坐标运算即可求得面APB与面CPB所成二面角的大小.这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.
解法二:
求解二面角的大小,关键在于作出它的平面角.取PB的中点G,PC的中点F,连接EG、AG、GF,则AG⊥PB,FG∥BC,FG=BC.因为AD⊥PB,所以BC⊥PB,FG⊥PB,所以∠AGF是所求二面角的平面角.
解答:(I)解:如图,作PO⊥平面ABCD,垂足为点O.连接OB、OA、OD、OB与AD交于点E,连接PE.

∵AD⊥PB,∴AD⊥OB,
∵PA=PD,∴OA=OD,
于是OB平分AD,点E为AD的中点,所以PE⊥AD.由此知∠PEB为面PAD与面ABCD所成二面角的平面角,
∴∠PEB=120°,∠PEO=60°
由已知可求得PE=
∴PO=PE•sin60°=
即点P到平面ABCD的距离为
(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA..连接AG.

又知.由此得到:



所以
等于所求二面角的平面角,
于是
所以所求二面角的大小为
解法二:如图,取PB的中点G,PC的中点F,连接EG、AG、GF,则AG⊥PB,FG∥BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,
∴∠AGF是所求二面角的平面角.
∵AD⊥面POB,∴AD⊥EG.
又∵PE=BE,∴EG⊥PB,且∠PEG=60°.
在Rt△PEG中,EG=PE•cos60°=
在Rt△PEG中,EG=AD=1.
于是tan∠GAE==
又∠AGF=π-∠GAE.
所以所求二面角的大小为π-arctan
点评:本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案