试题分析:解法一利用综合法证明解题:
(1)由已知可知AE⊥AB,又AE⊥AD,所以AE⊥平面ABCD,所以AE⊥DB,又ABCD为正方形,所以DB⊥AC,所以DB⊥平面AEC,而BD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536201217.png)
平面BED,故有平面AEC⊥平面BED.
(2)如图4-1中,设AC与BD交点为O,所以OE为两平面AEC和BED的交线.过C作平面BED的垂线,其垂足必在直线EO上,即∠OEC为EC与平面BED所成的角.再设正方形边长为2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536216283.png)
,则OA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536248423.png)
,AE=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536216283.png)
,所以OE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536279422.png)
,EC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536326492.png)
,所以在三角形OEC中,利用余弦定理可得 cos∠OEC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536326497.png)
,故所求为sin∠OEC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536185327.png)
.
解法二利用向量法:以A为原点,AE、AB、AD分别为x,y,z轴建立空间直角坐标系,如图4-2所示,
(1)设正方形边长为2,则E(2,0,0),B(0,2,0),C(0,2,2),D(0,0,2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536357436.png)
(0,2,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536372399.png)
=(0,-2,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536388424.png)
=(2,0,0),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536419423.png)
=(-2,0,2),从而有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536435632.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536450644.png)
,即BD⊥AC,BD⊥AE,所以BD⊥平面AEC,故平面BED⊥平面AEC.
(2)设平面BED的法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536466651.png)
,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536497920.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536513640.png)
,故取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536528529.png)
8分
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536544427.png)
=(-2,2,2),设直线EC与平面BED所成的角为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536560297.png)
,则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345365751496.png)
.
试题解析:解法一:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345365913145.png)
(1)由已知有AE⊥AB,又AE⊥AD,
所以AE⊥平面ABCD,所以AE⊥DB, 3分
又ABCD为正方形,所以DB⊥AC, 4分
所以DB⊥平面AEC,而BD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536201217.png)
平面BED
故有平面AEC⊥平面BED. 6分
(2)设AC与BD交点为O,所以OE为两平面AEC和BED的交线.
过C作平面BED的垂线,其垂足必在直线EO上,
即∠OEC为EC与平面BED所成的角. 7分
设正方形边长为2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536216283.png)
,则OA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536248423.png)
,AE=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536216283.png)
,
所以OE=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536279422.png)
,EC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536326492.png)
, 9分
所以在三角形OEC中,
由余弦定理得 cos∠OEC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536326497.png)
,故所求为sin∠OEC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536185327.png)
12分
解法二:以A为原点,AE、AB、AD分别为x,y,z轴建立空间直角坐标系. 1分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345367313752.png)
(1)设正方形边长为2,则E(2,0,0),B(0,2,0),C(0,2,2),D(0,0,2) 2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536357436.png)
(0,2,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536372399.png)
=(0,-2,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536388424.png)
=(2,0,0),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536419423.png)
=(-2,0,2),
从而有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536435632.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536450644.png)
,
即BD⊥AC,BD⊥AE,
所以BD⊥平面AEC,
故平面BED⊥平面AEC. 6分
(2)设平面BED的法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536466651.png)
,
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536497920.png)
,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536513640.png)
,故取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536528529.png)
8分
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536544427.png)
=(-2,2,2),设直线EC与平面BED所成的角为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034536560297.png)
,
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240345365751496.png)
12分