【题目】函数f(x)= 的定义域为( )
A.(0, )
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.
(I)求证:PB∥平面FAC;
(II)求三棱锥P-EAD的体积;
(III)求证:平面EAD⊥平面FAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
A.f(x)=
B.f(x)=x3
C.f(x)=( )x
D.f(x)=3x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.
(1)证明:四边形EFGH是矩形;
(2)求直线AB与平面EFGH夹角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
A.6
B.8
C.12
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 ;对落点在B上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 .假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:
(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,, 平面,Q是AD的中点,M是棱PC上的点,,,.
(1)求证:平面;
(2)若平面QMB与平面PDC所成的锐二面角的大小为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1
成绩 | 不及格 | 及格 | 总计 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
总计 | 16 | 36 | 52 |
表2
视力 | 好 | 差 | 总计 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
总计 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 总计 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
总计 | 16 | 36 | 52 |
表4
阅读量 | 丰富 | 不丰富 | 总计 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
总计 | 16 | 36 | 52 |
A.成绩
B.视力
C.智商
D.阅读量
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com