精英家教网 > 高中数学 > 题目详情
(2013•鹰潭一模)已知全集U=R,集合A={x|y=log(x2-x-6),x∈R},B={x|
5
x+1
<1,x∈R}
,则集合A∩?RB=(  )
分析:根据全集为R,由集合B,求出集合B的补集,求出集合A中的一元二次不等式的解集即可确定出集合A,然后求出A与B补集的交集即可.
解答:解:由全集为R,集合B={x|
5
x+1
<1,x∈R
}={x|x<-1或x>4},
得到?RB={x|-1≤x≤4},
又集合A为y=log(x2-x-6)的定义域,故x2-x-6>0,
解得:x<-2或x>3,所以集合A={x|x<-2或x>3},
则A∩(?RB)={x|3<x≤4}.
故答案为 C
点评:此题属于以一元二次不等式为平台,考查了交集及补集的混合运算,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•鹰潭一模)设l、m、n表示三条直线,α、β、r表示三个平面,则下面命题中不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)A﹑B﹑C是直线l上的三点,向量
OA
OB
OC
满足:
OA
-[y+2f'(1)]•
OB
+ln(x+1)•
OC
=
0

(Ⅰ)求函数y=f(x)的表达式;          
(Ⅱ)若x>0,证明f(x)>
2x
x+2

(Ⅲ)当
1
2
x2≤f(x2)+m2-2bm-3
时,x∈[-1,1]及b∈[-1,1]都恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至多三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)复数z=
2+i
1-i
-i(2-i)
在复平面对应的点在(  )

查看答案和解析>>

同步练习册答案