精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知数列的前项和为,其中为常数,
(I)证明:
(II)是否存在,使得为等差数列?并说明理由.

(I)详见解析;(II)存在,.

解析试题分析:(I)对于含递推式的处理,往往可转换为关于项的递推式或关于的递推式.结合结论,该题需要转换为项的递推式.故由.两式相减得结论;(II)对于存在性问题,可先探求参数的值再证明.本题由,列方程得,从而求出.得,故数列的奇数项和偶数项分别为公差为4的等差数列.分别求通项公式,进而求数列的通项公式,再证明等差数列.
试题解析:(I)由题设,.两式相减得,
由于,所以
(II)由题设,,可得,由(I)知,.令,解得
,由此可得,是首项为1,公差为4的等差数列,
是首项为3,公差为4的等差数列,
所以
因此存在,使得为等差数列.
【考点定位】1、递推公式;2、数列的通项公式;3、等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且
(1)求; (2)设数列满足,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,数列满足
(1)求
(2)求证数列是等差数列,并求数列的通项公式;
(3)设,数列的前项和为,求满足的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且.
(1)求; (2)设数列满足,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足:,(≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{}的前n项和为,求证:<<.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列的前项和为,已知
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·杭州模拟)已知数列{an}的前n项和Sn=-ann-1+2(n∈N*),数列{bn}满足bn=2nan
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等差数列,满足,数列满足,且是等比数列.
(1)求数列的通项公式;
(2)求数列的前项和.

查看答案和解析>>

同步练习册答案