精英家教网 > 高中数学 > 题目详情

【题目】如图甲,已知矩形中, 上一点,且,垂足为,现将矩形沿对角线折起,得到如图乙所示的三棱锥.

(Ⅰ)在图乙中,若,求的长度;

(Ⅱ)当二面角等于时,求二面角的余弦值.

【答案】(1)(2)余弦值为.

【解析】试题分析(Ⅰ)当时,由线面垂直的判定定理,可得平面,所以,由勾股定理求出BH的长度;(Ⅱ)以为坐标原点, 轴, 轴,垂直于平面的方向为轴建系,可得平面ADC的法向量为,由当二面角等于,求出点B,C,H三点的坐标,假设平面的法向量,由 ,求出 ,根据两向量的夹角公式,求出二面角的余弦值.

试题解析:(Ⅰ)由,可得折叠后平面

所以,又,所以平面,所以

解得 ,由勾股定理,

.

(Ⅱ)如图,以为坐标原点, 轴, 轴,垂直于平面的方向为轴建系,

可得平面的法向量为

即有,再由二面角等于

可得点坐标为

所以

设平面的法向量

所以

由横坐标大于横坐标,

所以二面角为钝角,所以余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若全集U=R,函数y= + 的定义域为A,函数y= 的值域为B.
(1)求集合A,B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2+4x﹣2y+3=0,直线l过点P(﹣3,0),圆M的圆心坐标是;若直线l与圆M相切,则切线在y轴上的截距是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体的六条棱中,有五条棱长都等于a,则该四面体的体积的最大值为(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣4x+3,若f(x)≥mx对任意的实数x≥2都成立,则实数m的取值范围是(
A.[﹣2 ﹣4,﹣2 ?+4]
B.(﹣∞,﹣2 ﹣4]∪[﹣2 ?+4,+∞)
C.[﹣2 ?+4,+∞)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+2(a﹣1)x+2在区间[﹣1,2]上单调,则实数a的取值范围为(
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若存在最小值,求的取值范围;

(Ⅱ)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校届高三文(1)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在的学生数有人.

(1)求总人数和分数在的人数

(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?

(3)现在从比分数在名学生(男女生比例为)中任选人,求其中至多含有名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

同步练习册答案