精英家教网 > 高中数学 > 题目详情
函数y=
3
4
x4-x3的极值点的个数为(  )
A、0个B、1个C、2个D、3个
考点:利用导数研究函数的极值
专题:计算题,导数的综合应用
分析:对函数求导,结合导数的符号判断函数的单调性,进而可求函数的极值的个数.
解答: 解:∵y=
3
4
x4-x3
∴y′=3x3-3x2=3x2(x-1),
令y′>0,则x>1,令y′<0,则x<1且x≠0,
则函数在(1,+∞)上是增函数,
在(-∞,0),(0,1)上是减函数.
故x=1为极小值点,无极大值点.
故选:B.
点评:本题主要考查了利用函数的导数判断函数的单调区间、函数的极值的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过原点O的圆C,与x轴相交于点A(4,0),与y轴相交于点B(0,2).
(1)求圆C的标准方程;
(2)直线l过B点与圆C相切,求直线L的方程,并化为一般式.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(2,0),B(4,2),若|
AB
|=2|
AC
|,则点C坐标为(  )
A、(1,-1)
B、(1,-1)或(5,-1)
C、(1,-1)或(3,1)
D、无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=(4m2-16m+16)•xm-
1
2
的图象不经过第二象限,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=
f(x)
x
在I上是减函数,则称y=f(x)是I上的“非完美增函数”,已知f(x)=lnx,g(x)=2x+
2
x
+alnx(a∈R)
(1)判断f(x)在(0,1]上是否是“非完美增函数”;
(2)若g(x)是[1,+∞)上的“非完美增函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求二次函数f(x)=x2-2x+3在下列区间中的最大值,最小值;
①x∈[-2,0]
②x∈[-2,2]
③x∈[t,t+1].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>1,y>2,x+y=15,则函数z=(x-1)(y-2)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R,且对任意实数x,y满足f(x+y)=f(x)f(y),给出以下四个结论:
①若f(1)=2,则f(3)=8;
②若对任意x,恒有f(x)=c,其中c为常数,则c=0;
③若存在x0,使得f(x0)=0,则对任意x,恒有f(x)=0;
④若存在x0,使得f(x0)≠0,则对任意x,恒有f(x)>0;
其中正确的是
 
(只用填上正确选项的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,已知a3+a8+a13=12,a3a8a13=28,求等差数列的通项an

查看答案和解析>>

同步练习册答案