精英家教网 > 高中数学 > 题目详情
10.已知直线l过定点A(1,0),且与圆C:(x-3)2+(y-4)2=4相切,则直线l的方程为x=1或3x-4y-3=0.

分析 设出切线方程,求出圆的圆心与半径,利用圆心到直线的距离等于半径,求出k,写出切线方程即可.

解答 解:设切线方程为y=k(x-1),即kx-y-k=0,
∵圆心(3,4)到切线l的距离等于半径2,
∴$\frac{|2k-4|}{\sqrt{{k}^{2}+1}}$=2,解得k=$\frac{3}{4}$,
∴切线方程为3x-4y-3=0,
当过点M的直线的斜率不存在时,其方程为x=1,圆心(3,4)到此直线的距离等于半径2,
故直线x=1也适合题意.
所以,所求的直线l的方程是x=1或3x-4y-3=0,
故答案为x=1或3x-4y-3=0.

点评 本题考查圆的切线方程的求法,注意直线的斜率存在与不存在情况,是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知递增的等比数列{an}中,a1,a2,a3分别为下表中第一、二、三行中某一个数,且a1,a2,a3中的任何两个数不在下表中同一行和同一列,
第一列第二列第三列
第一行3210
第二行6414
第三行9818
(1)求数列{an}通项公式;
(2)若数列{bn}满足${b_n}={a_n}+{(-1)^n}ln{a_n}$,若n为偶数,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正数a,b满足a+b=2,则$\frac{1}{a+1}+\frac{4}{b+1}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线y2=8x的焦点重合,点($\sqrt{2}$,$\sqrt{3}$)在C上
(Ⅰ)求C的方程;
(Ⅱ)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.2log525+3log264的值是22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“xy≠6”是“x≠2或y≠3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果二面角α-L-β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是$\frac{{3\sqrt{7}}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,其前n项和为Sn,若a3+a5+a7=$\frac{π}{4}$则sinS9的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.
(1)求f(x)的解析式,并画出的f(x)图象;
(2)设g(x)=f(x)-k,利用图象求:当实数k为何值时,函数g(x)有三个零点.

查看答案和解析>>

同步练习册答案