精英家教网 > 高中数学 > 题目详情

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为体育迷,已知体育迷中有10名女性.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否认为体育迷与性别

有关?


非体育迷

体育迷

合计









合计




(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为超级体育迷,已知超级体育迷中有2名女性,若从超级体育迷中任意选取2人,求至少有1名女性观众的概率.


0.05

0.01

k

3.841

6.635

【答案】见解析

【解析】

由频率分步直方图可知,在抽取的100人中,体育迷25人,从而列联表如下:


非体育迷

体育迷

合计


30

15

45


45

10

55

合计

75

25

100

列联表中的数据代入公式计算,

因为,所以我们没有理由认为体育迷与性别有关.

2)由频率分步直方图可知,超级体育迷5人,从而一切可能结果所组成的基本事件空间为

其中表示男性,表示女性,

10个基本事件组成,而且这些基本事件的出现是等可能的.

A表示任选2人中,至少有1人是女性这一事件,则

事件A7个基本事件组成,因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于次称为优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为.

1)若,则在第一轮游戏他们获优秀小组的概率;

2)若则游戏中小明小亮小组要想获得优秀小组次数为次,则理论上至少要进行多少轮游戏才行?并求此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

1)当时,求的单调区间;

2)求上的极大值与极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某商场2018年洗衣机、电视机和电冰箱三种电器各季度销量的百分比堆积图(例如:第3季度内,洗衣机销量约占,电视机销量约占,电冰箱销量约占).根据该图,以下结论中一定正确的是( )

A. 电视机销量最大的是第4季度

B. 电冰箱销量最小的是第4季度

C. 电视机的全年销量最大

D. 电冰箱的全年销量最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶100户贫困户.工作组对这100户村民的贫困状况和家庭成员受教育情况进行了调查:甲村55户贫困村民中,家庭成员接受过中等及以上教育的只有10户,乙村45户贫困村民中,家庭成员接受过中等及以上教育的有20.

1)完成下面的列联表,并判断是否有99.5%的把握认为贫困与接受教育情况有关;

家庭成员接受过中等以下

教育的户数

家庭成员接受过中等及以上

教育的户数

合计

甲村贫困户数

乙村贫困户数

合计

2)在被帮扶的100户贫困户中,按分层抽样的方法从家庭成员接受过中等及以上教育的贫困户中抽取6户,再从这6户中采用简单随机抽样的方法随机抽取2户,求这2户中甲、乙两村恰好各1户的概率.

参考公式与数据:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABCA1B1C1中,MM1分别为ABA1B1中点.

1)求证:C1M1∥面A1MC

2)若面ABC⊥面ABB1A1,△AB1B为正三角形,AB2BC1,求四棱锥B1AA1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是由正整数组成的无穷数列.若存在常数,使得任意的成立,则称数列具有性质.

(1)分别判断下列数列是否具有性质 (直接写出结论)

(2)若数列满足,求证:“数列具有性质数列为常数列的充分必要条件;

(3)已知数列.若数列具有性质,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:

年份

1

2

3

4

5

羊只数量(万只)

1.4

0.9

0.75

0.6

0.3

草地植被指数

1.1

4.3

15.6

31.3

49.7

根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,上顶点为A,过的直线y轴交于点M,满足O为坐标原点),且直线l与直线之间的距离为.

1)求椭圆C的方程;

2)在直线上是否存在点P,满足?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案