精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过定点的直线为.

1)若仅有一个公共点,求直线的方程;

2)若交于两点,直线的斜率分别为,试探究的数量关系.

【答案】(1)直线的方程为(2)

【解析】

1)点在抛物线外,对直线斜率是否存在分类讨论,当斜率存在时设出直线方程,与抛物线方程联立,利用方程组只有一个解,即可得出结论;

2)由(1)中结合韦达定理,确定关系,利用斜率公式,即可求解.

1)当直线的斜率不存在时,,显然满足题意;

当直线的斜率存在时,设

联立,消去整理得

时,方程只有唯一解,满足题意,此时的方程为.

时,,解得,此时的方程为.

综上,直线的方程为.

2)设,由

可知

所以

满足的数量关系为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,上一点,且的中点.沿将梯形折成大小为的二面角,若内(含边界)存在一点,使得平面,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形ABCD的边长为2,对角线ACBD相交于点O,动点P满足,若,其中mnR,则的最大值是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足 (N*),则称为数列的“偏差数列”.

(1)若为常数列,且为的“偏差数列”,试判断是否一定为等差数列,并说明理由;

(2)若无穷数列是各项均为正整数的等比数列,且为数列的“偏差数列”,求的值;

(3)设为数列的“偏差数列”,,若对任意恒成立,求实数M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,过的直线交椭圆于两点,若椭圆C的离心率为的周长为8.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知直线与椭圆C交于两点,是否存在实数k使得以为直径的圆恰好经过坐标原点?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)设,若对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,对称轴是轴,且过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)已知斜率为的直线轴于点,且与曲线相切于点,点在曲线上,且直线轴, 关于点的对称点为,判断点是否共线,并说明理由.

查看答案和解析>>

同步练习册答案