精英家教网 > 高中数学 > 题目详情
已知点P是椭圆上的动点, F1F2为椭圆的两个焦点,O是坐标原点,若M是F1PF2平分线上的一点,且F1MMP,则OM的取值范围是__________________。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(示范高中)如图,已知椭圆(a>b>0)的离心率,过点的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点,若直线与椭圆交于两点.问:是否存在的值,使以为直径的圆过点?请说明理由.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知直线与椭圆相交于两点,是线段上的一点,,且点M在直线
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在椭圆的右准线上的点,满足线段的中垂线过点.直线为动直线,且直线与椭圆交于不同的两点
(1)求椭圆C的方程;
(2)若在椭圆上存在点,满足为坐标原点),求实数的取值范围;
(3)在(Ⅱ)的条件下,当取何值时,的面积最大,并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分8分)已知椭圆C的方程是,直线过右焦点,与椭圆交于两点.
(Ⅰ)当直线的倾斜角为时,求线段的长度;
(Ⅱ)当以线段为直径的圆过原点时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三点
(1).求以为焦点且过点P的椭圆的标准方程;
(2)设点P, 关于直线的对称点分别为,求以为焦点且过点的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的点, 是椭圆的两个焦点,则的值为(   )
A. 10B. 8C.6D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中假命题是                                                (   )
A.+=1的焦点坐标为(0,4)和(0,—4).
B.过点(1,1)且与直线x-2y+=0垂直的直线方程是2x + y-3=0.
C.离心率为的双曲线的两渐近线互相垂直.
D.在平面内,到定点的距离与到定直线距离相等的点的轨迹是抛物线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设斜率为1的直线与椭圆相交于不同的两点A、B,则使为整数的直线共有(  ) A.4条  B.5条   C.6条   D.7条

查看答案和解析>>

同步练习册答案