分析 将-x代入已知解析式f(x)+g(x)=$\frac{1}{x-1}$,结合奇偶性的定义f(-x)=f(x),g(-x)=-g(x),整理可得f(x)与g(x)的又一关系式,与已知解析式联立解方程即可.
解答 解:∵f(x)是一个偶函数,g(x)是一个奇函数,
∴f(-x)=f(x),g(-x)=-g(x),
∵f(x)+g(x)=$\frac{1}{x-1}$①,
∴f(-x)+g(-x)=f(x)-g(x)=$\frac{1}{-x-1}$②,
①②联立,解得f(x)=$\frac{1}{{x}^{2}-1}$,g(x)=$\frac{x}{{x}^{2}-1}$,
∴$\frac{g(x)}{f(x)}$=x.
故答案为:x.
点评 本题考查了函数奇偶性的定义,注意将-x代入已知解析式从而构造出f(x)与g(x)的又一关系的方法的应用,同时考查了学生的方程思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | b<c<a | B. | a<b<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com