精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx,g(x)= (x为实常数).
(1)当a=1时,求函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2fx=g(x)(其中e=2.71828…)在区间[ ]上有解,求实数a的取值范围.

【答案】
(1)解:当a=1时,函数φ(x)=f(x)﹣g(x)=lnx﹣ +

∴φ′(x)= =

x∈[4,+∞),∴φ′(x)>0

∴函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上单调递增

∴x=4时,φ(x)min=2ln2﹣


(2)解:方程e2fx=g(x)可化为x2= ,∴a= ﹣x3

设y= ﹣x3,则y′= ﹣3x2

∵x∈[ ]

∴函数在[ ]上单调递增,在[ ,1]上单调递减

∵x= 时,y= ;x= 时,y= ;x=1时,y=

∴y∈[ ]

∴a∈[ ]


【解析】(1)求导数,求得函数的单调性,即可求函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;(2)化简方程,分离参数,再构建新函数,确定函数的单调性,求出函数的值域,即可求实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若 是两个相交平面,则在下列命题中,真命题的序号为( )
①若直线 ,则在平面 内一定不存在与直线 平行的直线.
②若直线 ,则在平面 内一定存在无数条直线与直线 垂直.
③若直线 ,则在平面 内不一定存在与直线 垂直的直线.
④若直线 ,则在平面 内一定存在与直线 垂直的直线.
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有最大值 ,且 的导数.
(Ⅰ)求 的值;
(Ⅱ)证明:当 时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,离心率为 ,经过点 且倾斜角为 的直线 交椭圆于 两点.

(1)若 的周长为16,求直线 的方程;
(2)若 ,求椭圆 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|+|x+1|.
(1)解关于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形 中, 分别为 的中点,现将 沿 折起,得四棱锥

(1)求证: 平面
(2)若平面 平面 ,求四面体 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3ax2+bx-5a+b是偶函数,且其定义域为[6a-1,a],则a+b=( )
A.
B.-1
C.1
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:

①函数y=f(x)在区间 内单调递增;
②函数y=f(x)在区间 内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x= 时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A.①②
B.②③
C.③④⑤
D.③

查看答案和解析>>

同步练习册答案