精英家教网 > 高中数学 > 题目详情
11.曲线y=x2+1在点(-1,2)处的切线方程为2x+y=0;(用直线方程一般式)

分析 求出函数y=x2+1在点(-1,2)处的导数值,得到曲线y=x2+1在点(-1,2)处的切线的斜率,则利用点斜式可得曲线y=x2+1在点(-1,2)处的切线方程.

解答 解:由y=x2+1,得:y′=2x,所以,y′|x=-1=-2,
则曲线y=x2+1在点(-1,2)处的切线方程为y-2=-2(x+1),
即2x+y=0.
故答案为:2x+y=0.

点评 本题考查了利用导数研究曲线上某点的切线方程问题,解答的关键是审清题意,看准要求的是在某点处还是过某点处,在某点处说明该点一定是切点,过某点处则不然,求解时需要设出切点,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某区要进行中学生篮球对抗赛,为争夺最后一个小组赛名额,甲、乙、丙三支篮球队要进行比赛,根据规则:每两支队伍之间都要比赛一场;每场比赛胜者得3分,负者得0分,没有平局,获得第一名的将夺得这个参赛名额.已知乙队胜丙队的概率为$\frac{1}{5}$,甲队获得第一名的概率为$\frac{1}{6}$,乙队获得第一名的概率为$\frac{1}{15}$.
(Ⅰ)求甲队分别战胜乙队和丙队的概率P1,P2
(Ⅱ)设在该次比赛中,甲队得分为X,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某产品的广告费用x与销售额y相对应的一组数据(x,y)为:(4,49),(2,26),(3,39),(5,54)根据上述数据可得回归方程y=$\overline{b}$x+$\overline{a}$中的$\overline{b}$=9.4,据此模型预报广告费用为6万元时销售额为(  )
A.63.6万元B.65.5万元C.67.7万元D.72.0万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.用边长为48cm的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,求小正方形边长为多少时所做的铁盒容积最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x3+3ax2+3bx+8c.
(1)若函数f(x)在x=1及x=2时取到极值,求实数a和b的值;
(2)若函数f(x)在x=1时取到极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),求直线l直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过抛物线y2=2px(p为大于0的常数)的焦点F,作与坐标轴不垂直的直线l交抛物线于M,N两点,线段MN的垂直平分线交MN于P点,交x轴于Q点,求PQ中点R的轨迹L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-8lnx,g(x)=-x2+14x
(1)若函数f(x)和函数g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;
(2)若F(x)=$\frac{1}{4}$[g(x)-f(x)]+m-$\frac{{x}^{2}}{2}$-$\frac{7x}{2}$在[$\frac{1}{e}$,e]上有两个不同的零点,求实数m的取值范围;
(3)试判断方程|-$\frac{1}{8}$f(x)+$\frac{1}{8}$x2-x|=$\frac{lnx}{x}$+$\frac{1}{2}$有无实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+m$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,若A、B、C三点共线,则m的值为:6.

查看答案和解析>>

同步练习册答案