【题目】已知函数f(x)= ax2+4x﹣lnx.
(1)当a=﹣3时,求f(x)的单调区间;
(2)当a≠0时,若f(x)是减函数,求a的取值范围.
【答案】
(1)解:f(x)的定义域是为(0,+∞)
a=﹣3,
令 ,
令 ,
所以f(x)的单调增区间为 ,单调减区间为 、(1,+∞)
(2)解:要使f(x)是减函数,必须使f'(x)≤0,即 ,
由于x>0,要使f'(x)≤0,只要ax2+4x﹣1≤0即
∴a≤﹣4
故a的取值范围为(﹣∞,﹣4]
【解析】(1)代入,求出函数的导函数f'(x),根据导函数的正负判断函数的单调区间;(2)根据题意可知f'(x)≤0,可转化为ax2+4x﹣1≤0(x>0)利用二次函数的性质求解即可.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
科目:高中数学 来源: 题型:
【题目】设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x= 时,四边形MENF的面积最小;
③四边形MENF周长l=f(x),x∈0,1]是单调函数;
④四棱锥C′﹣MENF的体积v=h(x)为常函数;
以上命题中真命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com