【题目】某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和(f(n)=前n年的总收入﹣前n年的总支出﹣投资额).
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?
【答案】
(1)解:由题意,第一年共支出12万元,以后每年支出增加4万元,可知每年的支出构成一个等差数列,用g(n)表示前n年的总支出,
∴g(n)=12n+ ×4=2n2+10n(n∈N*)
∵f(n)=前n年的总收入﹣前n年的总支出﹣投资额
∴f(n)=50n﹣(2n2+10n)﹣72=﹣2n2+40n﹣72.
由f(n)>0,即﹣2n2+40n﹣72>0,解得2<n<18
由n∈N*知,从第三年开始盈利.
(2)解:方案①:年平均纯利润为 =40﹣2(n+ )≤16,
当且仅当n=6时等号成立.
故方案①共获利6×16+48=144(万元),此时n=6.
方案②:f(n)=﹣2(n﹣10)2+128.
当n=10时,[f(n)]max=128.
故方案②共获利128+16=144(万元).
比较两种方案,获利都是144万元,但由于方案①只需6年,而方案②需10年,故选择方案①更合算
【解析】(1)根据第一年共支出12万元,以后每年支出增加4万元,可知每年的支出构成一个等差数列,故n年的总支出函数关系可用数列的求和公式得到;再根据f(n)=前n年的总收入﹣前n年的总支出﹣投资额,可得前n年的纯利润总和f(n)关于n的函数关系式;令f(n)>0,并解不等式,即可求得该厂从第几年开始盈利;(2)对两种决策进行具体的比较,以数据来确定那一种方案较好.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C的对边分别是a,b,c,且A、B、C成等差数列
(1)若 ,求△ABC的面积
(2)若sinA、sinB、sinC成等比数列,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}前n项和为Sn .
(1)若Sn=2n﹣1,求数列{an}的通项公式;
(2)若a1= ,Sn=anan+1 , an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项为正的等比数列{an}的前n项和为Sn , S4=30,过点P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直线的一个方向向量为(﹣1,﹣1)
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 证明:对于任意n∈N* , 都有Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin 的图象,只需把函数y=sin3x的图象上所有的点( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知圆C的方程:x2+y2﹣2x﹣4y+4=0,点P是直线l:x﹣2y﹣2=0上的任意点,过P作圆的两条切线PA,PB,切点为A、B,当∠APB取最大值时.
(Ⅰ)求点P的坐标及过点P的切线方程;
(Ⅱ)在△APB的外接圆上是否存在这样的点Q,使|OQ|= (O为坐标原点),如果存在,求出Q点的坐标,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断: ①直线AC与直线C1E是异面直线;②A1E一定不垂直于AC1;③三棱锥E﹣AA1O的体积为定值;④AE+EC1的最小值为2 .
其中正确的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某厂的产量x与成本y的一组数据:
产量x(千件) | 2 | 3 | 5 | 6 |
成本y(万元) | 7 | 8 | 9 | 12 |
(Ⅰ)根据表中数据,求出回归直线的方程 = x (其中 = , = ﹣ )
(Ⅱ)预计产量为8千件时的成本.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com