精英家教网 > 高中数学 > 题目详情

(本题满分12分)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;

(2)求调查中随机抽取了多少个学生的百米成绩;

(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

 

 

 

【答案】

解:(1)百米成绩在[16,17)内的频率为0.321=0.32. 0.321000=320

∴估计该年段学生中百米成绩在[16,17)内的人数为320人。   ……2分

(2)设图中从左到右前3个组的频率分别为3x,8x ,19x 依题意,得 3x+8x+19x+0.321+0.081=1 ,∴x=0.02     ……4分 

设调查中随机抽取了n 个学生的百米成绩,则    ∴n=50

∴调查中随机抽取了50个学生的百米成绩.     ……6分

(3)百米成绩在第一组的学生数有30.02150=3,记他们的成绩为a,b,c

百米成绩在第五组的学生数有0.08150= 4,记他们的成绩为m,n,p,q

则从第一、五组中随机取出两个成绩包含的基本事件有

{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个          ……9分

其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,……10分

所以P=      ……12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分12分)

为迎接国庆60周年,美化城市,某市将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,如图所示。要求BAM上,DAN上,且对角线MNC点,|AB|=3米,|AD|=2米.

(Ⅰ)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?w.w.w.k.s.5.u.c.o.m    

(Ⅱ)若AN的长度不小于6米,则当AMAN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;

(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求不全被选中的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源:正定中学2010高三下学期第一次考试(数学文) 题型:解答题

(本题满分12分)

为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:

 

A组

B组

C组

疫苗有效

673

疫苗无效

77

90

已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.

(1)求的值;

(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?

(3)已知,求不能通过测试的概率.

 

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高三第七次适应性考试数学(文) 题型:解答题

(本题满分12分)为研究气候的变化趋势,某市气象部门统计了共100个星期中每个星期气温的最高温度和最低温度,如下表:

(1)若第六、七、八组的频数为递减的等差数列,且第一组与第八组的频数相同,求出的值;

(2)若从第一组和第八组的所有星期中随机抽取两个星期,分别记它们的平均温度为,求事件“”的概率.

 

查看答案和解析>>

科目:高中数学 来源:2010年甘肃省天水市高一期中考试数学卷 题型:解答题

(本题满分12分) 设为实数,函数.

(1)若,求的取值范围;

(2)求的最小值;

(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

 

查看答案和解析>>

同步练习册答案