精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求函数的极小值;

(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

【答案】1)极小值为2;(2不存在,详见解析.

【解析】

试题(1)由a=4,得函数fx)的解析式,求出其导函数以及导数为0的根,通过比较两根的大小找到函数的单调区间,进而求出fx)的极小值;(2)若定义域内存在三个不同的自变量的取值xii=123),使得fxi-gxi)的值恰好都相等,设fxi-gxi=m.(i=123),则对于某一实数m,方程fx-gx=m在(0+∞)上有三个不等的实数,由此能求出在定义域内不存在三个不同的自变量的取值xii=123)使得fxi-gxi)的值恰好都相等.

解:(1)定义域为,由已知得2

则当上是减函数,

上是增函数,

故函数的极小值为6

2)若存在,设

则对于某一实数方程上有三个不等的实根,

则函数的图象与x轴有三个不同交点,

有两个不同的零点.9

显然上至多只有一个零点

则函数的图象与x轴至多有两个不同交点,则这样的不存在。 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 在区间上单调递增,在区间上单调递减;如图,四边形,,,的内角的对边,

且满足.

)证明:

)若,设,

,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.

(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;

(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.

甲班(

乙班(

总计

成绩优秀

成绩不优秀

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.847

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD;

(2)求证:平面BDE⊥平面PAC;

(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品13千克.

(1)求的值;

(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若对定义域内的任意,都有成立,求实数的值;

(2)若函数的定义域上是单调函数,求实数的取值范围;

(3)若,证明对任意的正整数 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的极值;

(2)当时,若函数恰有两个不同的零点,求的值;

(3)当时,若的解集为 ,且 中有且仅有一个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:

如果A、B两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有(   )种

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的各项为正数,且,数列满足:对任意恒成立,且常数.

1)若为等差数列,求证:也为等差数列;

2)若为等比数列,求的值(用c表示);

3)若,令,求证.

查看答案和解析>>

同步练习册答案