精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2cos22x﹣2,给出下列命题: ①β∈R,f(x+β)为奇函数;
α∈(0, ),f(x)=f(x+2α)对x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有(
A.①②
B.③④
C.②③
D.①④

【答案】C
【解析】解:由题意,f(x)=2cos22x﹣2=cos4x﹣1;

对于①,∵f(x)=cos4x﹣1的图象如图所示:

函数f(x+β)的图象是f(x)的图象向左或向右平移|β|个单位,

它不会是奇函数的,故①错误;

对于②,f(x)=f(x+2α),∴cos4x﹣1=cos(4x+8α)﹣1,

∴8α=2kπ,∴α= ,k∈Z;

又α∈(0, ),∴取α= 时,

∴f(x)=f(x+2α)对x∈R恒成立,②正确;

对于③,|f(x1)﹣f(x2)|=|cos4x1﹣cos4x2|=2时,

|x1﹣x2|的最小值为 = = ,∴③正确;

对于④,当f(x1)=f(x2)=0时,

x1﹣x2=kT=k = (k∈Z),∴④错误;

综上,真命题是②③.

故选:C.

化简函数f(x),画出f(x)的图象,根据图象平移判断函数f(x+β)不是奇函数,判断①错误;

根据f(x)=f(x+2α)求出方程在α∈(0, )的解,判断②正确;

由|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值为 = ,判断③正确;

当f(x1)=f(x2)=0时,x1﹣x2=kT= ,判断④错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司有AB两个景点,位于一条小路(直道)的同侧,分别距小路 km2 km,且AB景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1(a1)xyb0l2axby40求满足下列条件的ab的值.

(1)l1l2l1过点(1,1)

(2)l1l2l2在第一象限内与两坐标轴围成的三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中为了解高中学生的性别和喜欢打篮球是否有关,对50名高中学生进行了问卷调查,得到如下列联表:

喜欢打篮球

不喜欢打篮球

合计

男生

5

女生

10

合计

已知在这50人中随机抽取1人,抽到喜欢打篮球的学生的概率为
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.5%的把握认为喜欢打篮球与性别有关?
附:K2=

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的点P的坐标.

(1)∠MOP=∠OPN(O是坐标原点).

(2)∠MPN是直角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为(2 ). (Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为(
A.3600
B.1080
C.1440
D.2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1x+2y+1=0l2-2x+y+2=0,它们相交于点A.

(1)判断直线l1l2是否垂直?请给出理由.

(2)求过点A且与直线l33x+y+4=0平行的直线方程.

查看答案和解析>>

同步练习册答案