精英家教网 > 高中数学 > 题目详情
已知分别是双曲线)的两个焦点,是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则该双曲线的离心率为(   )
A.B.C.2D.
D.

试题分析:如图,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF2F1=30°,
∴AF1=c,AF2=C,∴a=
e==,故选D。
点评:典型题,涉及圆锥曲线的几何性质的考题中,往往注重a,b,c,e关系的考查。本题利用正三角形的性质,确定得到了e的方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点,若cam的等比中项,n2是2m2c2的等差中项,则椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于两点,使得.
(1)求椭圆的方程;(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程mx2-my2=n中,若mn<0,则方程的曲线是(    )
A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线
C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的焦点为F1、F2,过F1作x轴的垂线与该双曲线相交,其中一个交点为M,则||=
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(1)求椭圆方程;
(2)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P到点的距离比它到直线的距离大1,则点P满足的方程为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求由抛物线与它在点和点的切线所围成的区域的面积。

查看答案和解析>>

同步练习册答案