【题目】已知函数f(x)=x2+ .
(1)求证:f(x)是偶函数;
(2)判断函数f(x)在(0, )和( ,+∞)上的单调性并用定义法证明.
【答案】
(1)证明:f(x)=x2+ ,则其定义域为{x|x≠0},关于原点对称,
f(﹣x)=(﹣x)2+ =x2+ =f(x),
故函数f(x)为偶函数
(2)解:根据题意,函数f(x)在(0, )为减函数,在( ,+∞)上为增函数;
证明如下:
设0<x1<x2< ,
则f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由0<x1<x2< ,
则f(x1)﹣f(x2)>0,
则f(x)在(0, )为减函数,
同理设 <x1<x2,
则f(x1)﹣f(x2)=(x1)2+( )﹣(x2)2+( )
=[(x1)2﹣(x2)2][ ]=[(x1﹣x2)(x1+x2)][ ],
又由 <x1<x2,
分析可得f(x1)﹣f(x2)<0,
则f(x)在(0, )为增函数
【解析】(1)、根据题意,先分析函数的定义域,进而求出f(﹣x),分析与f(x)的关系,即可得证明;(2)、根据题意,分析可得函数f(x)在(0, )为减函数,在( ,+∞)上为增函数;进而利用作差法证明即可.
【考点精析】通过灵活运用函数单调性的判断方法和函数的奇偶性,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点, 的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)在椭圆上是否存在相异两点,使其满足:①直线与直线的斜率互为相反数;②线段的中点在轴上,若存在,求出的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= + .
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表
p(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= ,n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有( )
①用反证法证明命题“a,b∈R,方程x3+ax+b=0至少有一个实根”时,要作的假设是“方程至多有两个实根”;
②用数学归纳法证明“1+2+22+…+2n+2=2n+3﹣1,在验证n=1时,左边的式子是1+2+22;
③用数学归纳法证明 + +…+ > (n∈N*)的过程中,由n=k推导到n=k+1时,左边增加的项为 + ,没有减少的项;
④演绎推理的结论一定正确;
⑤要证明“ ﹣ > ﹣ ”的最合理的方法是分析法.
A.①④
B.④
C.②③⑤
D.⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距12km.A车、B车先后从甲地出发匀速驶向乙地.A车从甲地到乙地需行驶15min;B车从甲地到乙地需行驶10min.若B车比A车晚出发2min:
(1)分别写出A,B两车所行路程关于A车行驶时间的函数关系式;
(2)A,B两车何时在途中相遇?相遇时距甲地多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com