分析 (1)设抛物线y=x2上一点为P(x0,x02),求出点P(x0,x02)到直线2x-y-4=0的距离,利用配方法,由此能求出抛物线y=x2上一点到直线2x-y-4=0的距离最短的点的坐标;
(2)点P到准线的距离等于点P到焦点F的距离,过焦点F作直线x-y+2=0的垂线,此时d1+d2最小,根据抛物线方程求得F,进而利用点到直线的距离公式求得d1+d2的最小值.
解答 解:(1)设抛物线y=x2上一点P(x0,x02),
点P(x0,x02)到直线2x-y-4=0的距离d=$\frac{|2{x}_{0}-{{x}_{0}}^{2}-4|}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$|(x0-1)2+3|,
∴当x0=1时,即当P(1,1)时,
抛物线y=x2上一点到直线2x-y-4=0的距离最短,且为$\frac{3\sqrt{5}}{5}$;
(2)y=x2的焦点F(0,$\frac{1}{4}$),准线为y=-$\frac{1}{4}$,
点P到准线的距离等于点P到焦点F的距离,
过焦点F作直线2x-y-4=0的垂线,此时d1+d2最小,
且d1+d2=$\frac{|0-\frac{1}{4}-4|}{\sqrt{4+1}}$-$\frac{1}{4}$=$\frac{17\sqrt{5}}{20}$-$\frac{1}{4}$;
点评 本题主要考查了抛物线的定义和简单性质,点到直线距离公式的应用,正确运用抛物线的定义是关键.
科目:高中数学 来源: 题型:解答题
数学优秀 | 数学不优秀 | 总计 | |
化学优秀 | 60 | 100 | 160 |
化学不优秀 | 140 | 500 | 640 |
总计 | 200 | 600 | 800 |
p(K2>k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -36 | B. | -30 | C. | -27 | D. | -20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (1,2) | C. | (0,2) | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com