【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O为AC与BD的交点,E为棱PB上一点. (Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
【答案】解:(Ⅰ)证明:∵PD⊥平面ABCD,AC平面ABCD, ∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,
又∵PD∩BD=D,AC⊥平面PBD.
而AC平面EAC,∴平面EAC⊥平面PBD.
(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,
∴PD∥OE,
∵O是BD中点,∴E是PB中点.
取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,
∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD, .
∴
= = .
【解析】(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用 ,能求出三棱锥P﹣EAD的体积.
科目:高中数学 来源: 题型:
【题目】若圆的一条直径的两个端点分别是(﹣1,3)和(5,﹣5),则此圆的方程是( )
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程.
(Ⅱ)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线, ,则下列说法正确的是( )
A. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com