精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为 直线交椭圆 两点, 的周长为16 的周长为12.

1)求椭圆的标准方程与离心率;

(2)若直线与椭圆交于两点,且是线段的中点,求直线的一般方程.

【答案】(1) 椭圆E的标准方程为,离心率 (2)

【解析】试题分析:1)由直线交椭圆 两点, 的周长为16 的周长为12可得 再结合即可求出 的值从而求出椭圆的标准方程与离心率;2由(1)知,易知直线的斜率存在,设为,设利用点差法即可求出从而求出直线的一般方程.

试题解析:1)由题知,解得

椭圆E的标准方程为,离心率.

2)由(1)知

易知直线的斜率存在,设为,设,

是线段CD的中点

故直线的方程为,化为一般形式即: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2016·辽宁五校联考)某车间加工零件的数量x与加工时间y的统计数据如表:

零件数x(个)

10

20

30

加工时间y(分钟)

21

30

39

现已求得上表数据的线性回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为(  )

A. 84分钟 B. 94分钟

C. 102分钟 D. 112分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000.

1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】博鳌亚洲论坛2015年会员大会于3月27日在海南博鳌举办,大会组织者对招募的100名服务志愿者培训后,组织一次 知识竞赛,将所得成绩制成如右频率分布直方图假定每个分数段内的成绩均匀分布,组织者计划对成绩前20名的参赛者进行奖励.

1试确定受奖励的分数线;

2从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱平面 为等腰直角三角形, ,且 分别是的中点.

(1)若的中点,求证: 平面

(2)若是线段上的任意一点,求直线与平面所成角正弦的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.

(1)求该选手在复赛阶段被淘汰的概率;

(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,其中.

(1)试讨论函数的单调性;

(2)已知当 (其中是自然对数的底数)时,在上至少存在一点,使成立,求的取值范围;

(3)求证:当时,对任意,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l ,曲线C

(1)m3时,判断直线l与曲线C的位置关系;

(2)若曲线C上存在到直线l的距离等于的点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·太原市模拟题)已知abc分别是ABC的内角ABC所对的边,a2bcosBbc.

(1)证明:A2B

(2)a2c2b22acsinC,求A.

查看答案和解析>>

同步练习册答案