分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(1)由题意可得:$\left\{\begin{array}{l}{a_1}+{a_2}+{a_3}=7\\{a_1}+3+{a_3}+4=6{a_2}\end{array}\right.又q>1,得{a_1}=1,q=2$.
∴${a_n}={2^{n-1}}(n∈{N^*})$.
(2)${log_2}{a_n}={log_2}{2^{n-1}}=n-1$,
∴an+log2an=2n-1+(n-1).
∴Tn=$\frac{1-{2}^{n}}{1-2}$+$\frac{n(0+n-1)}{2}$=2n-1+$\frac{{n}^{2}-n}{2}$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {$\frac{{e}^{2}}{3}$} | B. | (0,$\frac{{e}^{2}}{3}$) | C. | ($\frac{{e}^{2}}{3}$,e) | D. | ($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{4}$ | π | $\frac{7π}{4}$ | $\frac{5π}{2}$ | $\frac{13π}{4}$ |
Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com