精英家教网 > 高中数学 > 题目详情
13.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,且满足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,其外接球的表面积为$\frac{16π}{9}$.

分析 三棱锥是正三棱锥,底面是边长为1的正三角形,外接圆的半径为$\frac{\sqrt{3}}{3}$,高为1,可得外接球的半径为$\sqrt{\frac{1}{3}+\frac{1}{9}}$=$\frac{2}{3}$,即可求出外接球的表面积.

解答 解:由题意,三棱锥是正三棱锥,底面是边长为1的正三角形,外接圆的半径为$\frac{\sqrt{3}}{3}$,
高为1,∴外接球的半径为$\sqrt{\frac{1}{3}+\frac{1}{9}}$=$\frac{2}{3}$,
∴外接球的表面积为4$π•\frac{4}{9}$=$\frac{16π}{9}$.
故答案为:$\frac{16π}{9}$.

点评 本题考查空间图形的三视图,外接球的表面积,考查学生的计算能力,确定外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.把一个放在水平地面上、长为l的匀质链条竖直向上刚好拉直时,它的重心位置升高多少?一个放在水平地面上、棱长为a的均匀正方体,绕其一条棱翻转时,其重心位置升高的最大高度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.将某正方体工件进行切削,把它加工成一个体积尽可能大的新工件,新工件的三视图如图所示,则原工件材料的利用率为〔材料的利用率=$\frac{新工件的体积}{原工件的体积}$〕(  )
A.$\frac{7}{8}$B.$\frac{6}{7}$C.$\frac{5}{6}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)+f(-x)=8,f(lg(log210))=5,则f(lg(lg2))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在一次抗雪救灾中,需要在A、B两地之间架设高压电线,为测量A、B两地的距离,救援人员在相距l米的C、D两地(A,B,C,D在同一平面上),测得∠ACD=45°,∠BCD=30°∠ADC=75°(如图),考虑到电线在自然下垂和施工损耗等原因,实际所得电线长度大于应是A、B距离的1.2倍,问救援至少英爱准备多长的电线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有一组实验数据如表:
t1.993.04.05.16.12
y1.504.047.5012.0018.01
给出下列函数:①v=log${\;}_{\frac{1}{2}}$t;②v=$\sqrt{t}$;③v=($\frac{3}{2}$)t④y=$\frac{{t}^{2}-1}{2}$;
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是④(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|3≤x≤6},B={x|5<x<8}.
求:(1)A∪B;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知幂函数f(x)的图象过点$(4,\frac{1}{2})$,则f(16)的值是(  )
A.$\frac{1}{4}$B.$4\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)的最小正周期为T,则函数y=f(2x)的最小正周期是$\frac{T}{2}$.

查看答案和解析>>

同步练习册答案