精英家教网 > 高中数学 > 题目详情
19.已知P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a、b是正数)上任意一点,则P到两条渐近线的距离之积为$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

分析 利用点到直线的距离公式,结合双曲线方程,即可得出结论.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的任一点P(x,y),两条渐近线方程为bx±ay=0,
∴双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的任一点到两条渐近线距离之积为$\frac{(bx+ay)(bx-ay)}{(\sqrt{{b}^{2}+{a}^{2}})^{2}}$=$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.
故答案为:$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$.

点评 本题考查点到直线的距离公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=(2,1),\overrightarrow b=(-1,3)$,向量$\overrightarrow c$满足:$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,求:
(1)向量$\overrightarrow a$在向量$\overrightarrow b$上的投影;
(2)向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:若随机事件A,B是对立事件,则A,B一定是互斥事件,则¬P是(  )
A.若随机事件A,B是对立事件,则A,B一定不是互斥事件
B.若随机事件A,B不是对立事件,则A,B一定不是互斥事件
C.存在随机事件A,B是对立事件,并且A,B不是互斥事件
D.存在随机事件A,B不是对立事件,并且A,B是互斥事件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)化简求值:$\sqrt{6\frac{1}{4}}$+$\root{3}{{8}^{2}}$+0.027${\;}^{-\frac{2}{3}}$×(-$\frac{1}{3}$)-2  
(2)已知${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$=3,求a2+a-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别是F1,F2,离心率是e=$\frac{1}{2}$,P点在椭圆上,△PF1F2的内切圆面积最大值是$\frac{4}{3}$π.
(1)求椭圆方程;
(2)若A,B,C,D是椭圆上不重合的四个点,$\overrightarrow{{F}_{1}A}$∥$\overrightarrow{{F}_{1}C}$,$\overrightarrow{{F}_{1}B}$∥$\overrightarrow{{F}_{1}D}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$D=0,求:|$\overrightarrow{AC}$|+|$\overrightarrow{BD}$|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列条件中可以确定两条直线平行的是(  )
A.垂直同一条直线的两条直线B.平行同一平面的两条直线
C.平行同一条直线的两条直线D.和同一平面所成角相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在(2x-3y)10的展开式中,求:
(1)各项系数的和;
(2)奇数项的二项式系数和与偶数项的二项式系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线的两个焦点F1,F2之间的距离为26,双曲线上一点到两焦点的距离之差的绝对值为24,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将长为10米的铁丝折成矩形,求矩形的面积y关于其中一边长x的解析式,并写出此函数的定义域.

查看答案和解析>>

同步练习册答案