精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(2x-
π3
)+sin2x-cos2x

(I)求函数f(x)的最小正周期及图象的对称轴方程;
(II)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
分析:(I)利用两角差的余弦函数展开函数,再用二倍角公式以及两角和的正弦函数化简为sin(2x-
π
6
)
,然后求函数f(x)的最小正周期及图象的对称轴方程;
(II)化简函数g(x)=[f(x)]2+f(x),把sin(2x-
π
6
)
看为一个未知数,配成平方关系,然后求g(x)的值域.
解答:解:(I)f(x)=
1
2
cos2x+
3
2
sin2x+sin2x-cos2x
=
1
2
cos2x+
3
2
sin2x-cos2x=sin(2x-
π
6
)

∴最小正周期T=
2

2x-
π
6
=kπ+
π
2
(k∈Z)

x=
2
+
π
3
(k∈Z)

函数图象的对称轴方程为x=
2
+
π
3
(k∈Z)

(II)g(x)=[f(x)]2+f(x)=sin2(2x-
π
6
)+sin(2x-
π
6
)=[sin(2x-
π
6
)+
1
2
]2-
1
4

sin(2x-
π
6
)=-
1
2
时,g(x)取得最小值-
1
4

sin(2x-
π
6
)=1
时,g(x)取得最大值2,
所以g(x)的值域为[-
1
4
,2]
点评:本题是基础题,考查三角函数的性质,二倍角公式,两角和与差的三角函数,三角函数的值域的求法,考查计算能力,基本知识的灵活应用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案