精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形, 平面 中点.

I)求证:直线平面

II)求证:直线平面

III)在上是否存在一点,使得二面角的大小为,若存在,确定的位置,若不存在,说明理由.

【答案】I见解析;见解析III重合.点的位置为所求.

【解析】试题分析:I)结合条件中给出的线段间的长度关系,在上取点,使,证明四边形为平行四边形,可得,故可得结论;II)结合图形分析可得只需证 ,便可得到平面III)建立空间直角坐标系,用向量法通过计算进行判断可得结果。

试题解析:

证明:(I)在上取点,使,连接

因为

所以

因为

所以

所以四边形为平行四边形,

所以

平面, 平面,

所以平面

Ⅱ)因为中点,底面是菱形,

所以

因为

所以

所以

平面

所以

所以直线平面

III)由(Ⅱ)可知 ,相互垂直,以为原点,建立如图所示的空间直角坐标系D-xyz.

假设存在点G满足条件,其坐标为

设平面的一个法向量为

,则

同理可得平面的法向量

由题意得

解得

所以点

所以当点与点重合时,二面角的大小为

因此点为所求的点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量

14

58

912

1316

17件及以上

顾客数(人)

x

30

25

y

10

结算时间(分钟/人)

1

1.5

2

2.5

3

已知这100位顾客中一次购物量超过8件的顾客占55%

)确定xy的值,并求顾客一次购物的结算时间X的分布列与数学期望;

)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.

(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 (为自然对数的底数).

(Ⅰ)讨论函数的单调性,并写出相应的单调区间;

(Ⅱ)设,若函数对任意都成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x﹣30)2件. (Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ ],求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2 , 则不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集为(
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

同步练习册答案