精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知三棱柱ABC-A1B1C1的底面是边长为2的正三角形,侧棱A1A与AB、AC均成45°角,且A1E⊥B1B于E,A1F⊥CC1于F.
(1)求证:平面A1EF⊥平面B1BCC1
(2)求直线AA1到平面B1BCC1的距离.
分析:(1)欲证平面A1EF⊥平面B1BCC1,根据面面垂直的判定定理可知在平面B1BCC1内一直线与平面A1EF垂直,而根据线面垂直的判定定理可知CC1⊥平面A1EF;
(2)作A1H⊥EF于H,根据线面垂直的性质定理可知A1H⊥面B1BCC1,则A1H为A1到面B1BCC1的距离,在△A1EF中,求出EF,然后根据△A1EF为等腰Rt△且EF为斜边,得到A1H=
1
2
EF,即可求出所求.
解答:解:
(1)证明:CC1∥BB1,又BB1⊥A1E,
∴CC1⊥A1E,而CC1⊥A1F,∴CC1⊥平面A1EF,
∴平面A1EF⊥平面B1BCC1
(2)作A1H⊥EF于H,则A1H⊥面B1BCC1
∴A1H为A1到面B1BCC1的距离,在△A1EF中,A1E=A1F=
2
,EF=2,
∴△A1EF为等腰Rt△且EF为斜边,
∴A1H为斜边上中线,可得A1H=
1
2
EF=1
点评:本小题主要考查空间中的线面关系,考查面面垂直的判定及线面距离的计算,考查空间想象能力、推理论证能力和运算能力,考查转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分别是棱CC1,AB中点.
(Ⅰ)求证:CN⊥平面ABB1A1
(Ⅱ)求证:CN∥平面AMB1
(Ⅲ)求三棱锥B1-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足
A1P
A1B1

(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,点P在直线A1B1上,且
A1P
A1B1

(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点P,使得平面PMN与平面ABC所成的二面角为30°,若存在,试确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的所有棱长均为2,且A1A⊥底面ABC,D为AB的中点,G为△ABC1的重心,则|
CG
|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1与平面ABC所成的角.

查看答案和解析>>

同步练习册答案