精英家教网 > 高中数学 > 题目详情

(1)已知(x+1)6(ax-1)2的展开式中含x3的项的系数是20,求a的值。

(2)设(5x-)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,求展开式中二项式系数最大的项。

(1)0或5

(2)6


本试题主要是考查了二项式定理的运用。求解各个项的系数和采用赋值的思想得到。
同时也考查了二项式系数的性质,以及二项式系数的最大项的综合运用。
(1)0或5(2)依题意得,M=4n=(2n)2,N=2n,于是有(2n)2-2n=240,(2n+15)(2n-16)=0,2n=16=24,n=4,得6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x为正数,下列求极值的过程正确的是(  )
A、y=x2+2x+
4
x3
≥3•
3x2•2x•
4
x3
=6,∴ymin=6
B、y=2+x+
1
x
≥3•
32•x•
1
x
=3
32
,∴ymin=3
32
C、y=2+x+
1
x
≥2+2
x•
1
x
=4∴ymin=4
D、y=x(1-x)(1-2x)≤
1
3
[
3x+(1-x)+(1-2x)
3
]3=
8
81
,∴ymin=
8
81

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,
(1)求m与n的关系式;
(2)求f(x)的单调区间;
(3)若m<-4,求证:函数y=f(x)的图象与x轴只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x≥-1,比较x3+1与x2+x的大小,并说明x为何值时,这两个式子相等.
(2)解关于x的不等式x2-ax-6a2>0,其中a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),f(x)=log
1
2
(1-x)
,则函数f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

求解析式:
(1)已知f(
1
x
)=
x
1-x2
,求f(x); 
(2)已知二次函数f(x)满足f(0)=0且f(x+1)=f(x)+x+1,求f(x)的表达式.

查看答案和解析>>

同步练习册答案