【题目】已知椭圆的两个焦点分别是,,且椭圆经过点.
(1)求椭圆的标准方程;
(2)当取何值时,直线与椭圆有两个公共点;只有一个公共点;没有公共点?
【答案】(1);(2)时,直线与椭圆有两个公共点;或时,直线与椭圆只有一个公共点;或时,直线与椭圆没有公共点.
【解析】
(1)根据椭圆的焦点,得到,将点代入椭圆方程,得到的方程,解出的值,从而得到答案;
(2)直线与椭圆联立,根据与的关系,得到关于的不等式,得到答案.
(1)设椭圆的标准方程为,
因为椭圆的焦点分别是,,
所以,
将点代入椭圆方程得,
根据,得到,,
所以椭圆的标准方程为.
(2)直线与椭圆联立,
,得,
则,
①当,即,解得,
方程有两个不同的实数根,
即直线与椭圆有两个公共点;
②当,即,解得或,
方程有两个相同的实数根,
即直线与椭圆只有一个公共点;
③当,即,解得或,
方程没有实数根,
即直线与椭圆没有公共点;
科目:高中数学 来源: 题型:
【题目】已知为椭圆上一点,为椭圆长轴上一点,为坐标原点,有下列结论:①存在点,,使得为等边三角形;②不存在点,,使得为等边三角形;③存在点,,使得;④不存在点,,使得.其中,所有正确结论的序号是( )
A.①④B.①③C.②④D.②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.
(1)求样本容量及样本中净重大于或等于96克并且小于102克的产品的个数;
(2)已知这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为求这批产品平均每个的利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校工会开展健步走活动,要求教职工上传3月1日至3月7日微信记步数信息,下图是职工甲和职工乙微信记步数情况:
(Ⅰ)从3月1日至3月7日中任选一天,求这一天职工甲和职工乙微信记步数都不低于10000的概率;
(Ⅱ)从3月1日至3月7日中任选两天,记职工乙在这两天中微信记步数不低于10000的天数为,求 的分布列及数学期望;
(Ⅲ)如图是校工会根据3月1日至3月7日某一天的数据,制作的全校200名教职工微信记步数的频率分布直方图.已知这一天甲和乙微信记步数在单位200名教职工中排名分别为第68和第142,请指出这是根据哪一天的数据制作的频率分布直方图(不用说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义集合与集合之差是由所有属于且不属于的元素组成的集合,记作 且.已知集合.
(Ⅰ)若集合,写出集合的所有元素;
(Ⅱ)从集合选出10个元素由小到大构成等差数列,其中公差的最大值和最小值分别是多少?公差为和的等差数列各有多少个?
(Ⅲ)设集合,且集合中含有10个元素,证明:集合中必有10个元素组成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为20米,圆O的半径为1米,圆心足正方形的中心,点P、Q分别在线段AD、CB上,若线段PQ与圆O有公共点,则称点Q在点P的“盲区”中. 已知点P以1.5米/秒的速度从A出发向D移动,同时,点Q以1米/秒的速度从C出发向B移动,则点P从A移动到D的过程中,点Q在点P的育区中的时长约为________秒(精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知两点,,动点P在y轴上的摄影是H,且,
(1)求动点P的轨迹方程;
(2)设直线,的两个斜率存在,分别记为,,若,求点P的坐标;
(3)若经过点的直线l与动点P的轨迹有两个交点为T、Q,当时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体ABCD-A1B1C1D1中,点A关于平面BDC1对称点为M,则M到平面A1B1C1D1的距离为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com