精英家教网 > 高中数学 > 题目详情

(本小题共14分)

在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。

解:(1)因点B与(-1,1)关于原点对称,得B点坐标为(1,-1)。

       设P点坐标为,则,由题意得

       化简得:

       即P点轨迹为:

       (2)因,可得

       又

       若,则有,   即

       设P点坐标为,则有:

       解得:,又因,解得

       故存在点P使得的面积相等,此时P点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

      数列的前n项和为,点在直线

上.

   (I)求证:数列是等差数列;

   (II)若数列满足,求数列的前n项和

   (III)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)

如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面

(Ⅱ)当EPB的中点时,求AE与平面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009北京理)(本小题共14分)

已知双曲线的离心率为,右准线方程为

(Ⅰ)求双曲线的方程;

(Ⅱ)设直线是圆上动点处的切线,与双曲线

于不同的两点,证明的大小为定值.

查看答案和解析>>

科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题

(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F

⑴求证:PA//平面EDB

⑵求证:PB平面EFD

⑶求二面角C-PB-D的大小

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题

(本小题共14分)

正方体的棱长为的交点,的中点.

(Ⅰ)求证:直线∥平面

(Ⅱ)求证:平面

(Ⅲ)求三棱锥的体积.

 

查看答案和解析>>

同步练习册答案