分析 (Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=2$\sqrt{3}$sinxcosx+sin2x-cos2x=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),利用三角函数的性质,即可求出f(x)取最大值时x的取值集合;
(Ⅱ)先求出C,再求出△ABC的面积.
解答 解:(Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=2$\sqrt{3}$sinxcosx+sin2x-cos2x=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),…(3分)
当2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$(k∈Z)时,f(x)max=2,
对应x的集合为{x|x=kπ+$\frac{π}{3}$,k∈Z}.…(6分)
(Ⅱ)由f(C)=2,得2sin(2C-$\frac{π}{6}$)=1,
∵0<C<π,∴-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,∴2C-$\frac{π}{6}$=$\frac{π}{2}$,解得C=$\frac{π}{3}$,…(8分)
又∵a+b=2$\sqrt{3}$,c=$\sqrt{6}$,由余弦定理得c2=a2+b2-ab,
∴12-3ab=6,即ab=2,…(10分)
由面积公式得△ABC面积为S△ABC=$\frac{1}{2}×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.…(12分)
点评 本题考查三角函数的图象与性质,考查余弦定理,考查向量知识的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $2\sqrt{3}$ | B. | 3 | C. | $\sqrt{6}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com