精英家教网 > 高中数学 > 题目详情

【题目】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(Ⅰ)估计该组数据的中位数、众数;

(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);

(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:

(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;

(ii)每次赠送的随机话费和对应概率如下:

赠送话费(单元:元)

10

20

概率

现有一位市民要参加此次问卷调查,记X(单位元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.

若ZN(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

【答案】(1) 65,65 (2) 0.8185(3)

【解析】试题分析:(Ⅰ) 由(0.0025 +0.0050+0.0100+0.0150 + a + 0. 0225 + 0. 0250)×10 =1,得a =0.0200,设中位数为,由(0.0025 + 0. 0150 + ) ×10+(x-60) ×0.0250 = 0.5000,解得x = 65, 由频率分布直方图可知众数为65.

(Ⅱ) 从这1000人问卷调查得到的平均值μ为

μ= 35×0.025 + 45×0.15 +55×0.20+65×0.25+75×0.225+85×0.1+ 95×0.05=65,因为由于得分Z服从正态分布N(65,210),所以

P(50.5<Z<94)=P(60-14.5<Z<60 + 14.5×2)= 即得解;

(Ⅲ) 设得分不低于μ分的概率为p,则P(Z≥μ)= ,由题意得各概率即可得分布列和期望.

试题解析:

(Ⅰ)由(0.0025 +0.0050+0.0100+0.0150 + a + 0. 0225 + 0. 0250)×10 =1,得a =0.0200,

设中位数为,由(0.0025 + 0. 0150 + ) ×10+(x-60) ×0.0250 = 0.5000,解得x = 65,

由频率分布直方图可知众数为65.

(Ⅱ)从这1000人问卷调查得到的平均值μ为

μ= 35×0.025 + 45×0.15 +55×0.20+65×0.25+75×0.225+85×0.1+ 95×0.05

=0.875 + 6.75+11 +16.25+ 16. 875 + 8.5 +4.75 = 65

因为由于得分Z服从正态分布N(65,210),

所以P(50.5<Z<94)=P(60-14.5<Z<60 + 14.5×2)= =0.8185.

(Ⅲ)设得分不低于μ分的概率为p,则P(Z≥μ)=

X的取值为10,20,30,40,

P(X=10) =

P(X=30) =,.

所以X的分布列为:

X

10

20

30

40

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 平面 平面 是等边三角形,

的中点.

(1)求证:

(2)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

1)求的方程;

2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

证明:

MAB,MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆内一定点,动圆过点且与圆内切.记动圆圆心的轨迹为.

(Ⅰ)求轨迹方程;

(II)过点的动直线l交轨迹MN两点,试问:在坐标平面上是否存在一个定点Q,使得以线段MN为直径的圆恒过点Q?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知点D是AB上一点,满足,点E是边CB上一点,满足

①当λ=时,求

②是否存在非零实数λ,使得?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个判断:

①某校高二一班和高二二班的人数分别是mn,某次测试数学平均分分别为ab,则这两个班的数学平均分为

②10名工人生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b

③设m,命题“若a>b,则”的逆否命题为假命题;

④命题p“方程表示椭圆”,命题q“的取值范围为1<<4”,则p是q的充要条件;

⑤线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;

其中正确的个数有(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[2030)[3040)[8090],并整理得到如下频率分布直方图:

1)估算一下本次参加考试的同学成绩的中位数和众数;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[4050)内的人数;

3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.

查看答案和解析>>

同步练习册答案