精英家教网 > 高中数学 > 题目详情
13.已知定义在[0,+∞)的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=-x2+2x.设f(x)在[2n-2,2n)上的最大值为${a_n},n∈{N^*}$,则{an}的前n项和Sn=$\frac{3}{2}[{1-{{({\frac{1}{3}})}^n}}]$.

分析 通过函数f(x)满足f(x)=3f(x+2)可知函数向右平移2个单位时最大值变为原来的$\frac{1}{3}$,进而可知数列{an}是首项为1、公比为$\frac{1}{3}$的等比数列,计算即得结论.

解答 解:∵函数f(x)满足f(x)=3f(x+2),
∴f(x+2)=$\frac{1}{3}$f(x),即函数向右平移2个单位,最大值变为原来的$\frac{1}{3}$,
又∵当x∈[0,2)时,f(x)=-x2+2x,
∴a1=f(1)=1,
∴数列{an}是首项为1、公比为$\frac{1}{3}$的等比数列,
∴Sn=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$=$\frac{3}{2}[{1-{{({\frac{1}{3}})}^n}}]$,
故答案为:$\frac{3}{2}[{1-{{({\frac{1}{3}})}^n}}]$.

点评 本题考查数列的前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线x2=4py(p>0)的焦点为F,直线y=x+2与该抛物线交于A、B两点,M是线段AB的中点,过M作x轴的垂线,垂足为N,若$\overrightarrow{AF}•\overrightarrow{BF}+(\overrightarrow{AF}+\overrightarrow{BF})•\overrightarrow{FN}=-1-{5p}^{2}$,则p的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.雅礼中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k=20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是(  )
A.177B.157C.417D.367

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知a=2,A=45°,B=120°,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则三角形MPF的面积为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}的前n项和为Sn,若a3+a4=5,则S6=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,a≠1且loga3>loga2,若函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为1.
(1)求a的值;    
(2)求不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}$(a-x)的解集;
(3)设方程${log_{2a}}x={(\frac{1}{2a})^x}\;,\;{log_{\frac{1}{2a}}}x={(\frac{1}{2a})^x}$的根分别为x1,x2,求x1x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.方程y=k(x-1)表示(  )
A.过点(-1,0)的所有直线B.过点(1,0)的所有直线
C.过点(1,0)且不垂直于x轴的所有直线D.过点(1,0)且除去x轴的所有直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要得到函数$y=sin({\frac{x}{2}-\frac{π}{4}})$的图象,只需将y=sin$\frac{x}{2}$的图象(  )
A.向左平移$\frac{π}{2}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

同步练习册答案