【题目】国内,某知名连接店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖的有效展开,参与抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计, 表示开业第天参加抽奖活动的人数,得到统计表格如下:
经过进一步的统计分析,发现与具有线性相关关系.
(1)如从这7天中随便机抽取两天,求至少有1天参加抽奖人数超过10天的概率;
(2)根据上表给出的数据,用最小二乘法,求出与的线性回归方程,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式: , , , .
【答案】(1)(2)140
【解析】试题分析:(1)先利用枚举法确定7天中随便机抽取两天总事件数,从中确定至少有1天参加抽奖人数超过10的事件数,最后根据古典概型概率公式求概率,(2)先求平均数,代入公式求,利用求,即得线性回归方程,再利用线性回归方程估计时参加抽奖的人数,得到此次抽奖活动总人数.
试题解析:(Ⅰ)这7天中参加抽奖的人数没有超过10的为第1,2,3,4天,超过10的为第5,6,7天,从这7天中任取两天的情况有, , , , , , , , , , , , , , , , , , , , ,共21种,其中至少有1天参加抽奖人数超过10的有15种,所以.
(Ⅱ)依题意: .
, , ,
, ,
则关于的线性回归方程为,
预测时, 时, , 时,
则此次活动参加抽奖的人数约为人.
科目:高中数学 来源: 题型:
【题目】如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P0)开始计算时间.
(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)的距离的2倍.
(1)求动点M的轨迹C的方程;
(2)过点P(0,3)的直线m与轨迹C交于A,B两点,若A是PB的中点,求直线m的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=2,an+1=4an﹣3n+1,n∈N* .
(1)证明数列{an﹣n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)证明不等式Sn+1≤4Sn , 对任意n∈N*皆成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中
.且点为线段的中点, , 现将△沿进行翻折,使得二面角
的大小为,得到图形如图(2)所示,连接,点分别在线段上.
(1)证明: ;
(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零向量 , , , 满足 =2 ﹣ , =k + ,给出以下结论:
①若 与 不共线, 与 共线,则k=﹣2;
②若 与 不共线, 与 共线,则k=2;
③存在实数k,使得 与 不共线, 与 共线;
④不存在实数k,使得 与 不共线, 与 共线.
其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,,其中,.
(Ⅰ)若函数在处有极小值,求,的值;
(Ⅱ)若,设,求证:当时,;
(Ⅲ)若,,对于给定,,,,,其中,,,若.求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12 m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.
(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com