精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)求函数的最小正周期;

(Ⅱ)求函数在区间上的最值以及相应的x的取值.

【答案】(Ⅰ);(Ⅱ)时,取得最大值2时,取得最小值.

【解析】

(Ⅰ)利用二倍角和两角和与差以及辅助角公式将函数化为yAsin(ωx+φ)的形式,利用三角函数的周期公式求函数的最小正周期.

(Ⅱ)利用x∈[]上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出fx)的最大值和最小值.

(Ⅰ)因为函数fx)=4cosxsinx1

化简可得:fx)=4cosxsinxcos4cos2xsin1

sin2x+2cos2x1sin2x+cos2x2sin2x

所以的最小正周期为

(Ⅱ)因为,所以

,即时,fx取得最大值2;

,即时,fx取得最小值-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.

(1)证明:AC1⊥平面A1BC;
(2)求三棱锥B﹣A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:

(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,下列说法中错误的个数是( )

平面

四点不可能共面;

③若,则平面平面

④平面与平面可能垂直.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.

(1)若甲投篮3次,求至少命中2次的概率;

(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,Sn=(﹣1)nan ,n∈N* , 则
①a3=
②S1+S2+…+S100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】( 2013湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:

X

1

2

3

4

Y

51

48

45

42

这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;
(2)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.

I求张同学至少取到1道乙类题的概率;

II已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案