(本小题满分14分)
已知函数,,图象与轴异于原点的交点M处的切线为,与轴的交点N处的切线为, 并且与平行.
(1)求的值;
(2)已知实数t∈R,求函数的最小值;
(3)令,给定,对于两个大于1的正数,
存在实数满足:,,并且使得不等式
恒成立,求实数的取值范围.
(1);
(2)①当即时,
②当即时,
③当即时,
;
,
【解析】本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、利用导数研究函数的单调性等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a值,从而得到f(2)的值;
(2)令u=xlnx,再研究二次函数u2+(2t-1)u+t2-t图象是对称轴u= ,开口向上的抛物线,结合其性质求出最值;(3)先由题意得到F(x)=g(x)+g′(x)=lnx+ ,再利用导数工具研究所以F(x)在区间(1,+∞)上单调递增,得到当x≥1时,F(x)≥F(1)>0,下面对m进行分类讨论:①当m∈(0,1)时,②当m≤0时,③当m≥1时,结合不等式的性质即可求出a的取值范围.
解: 图象与轴异于原点的交点,
图象与轴的交点,
由题意可得,即, ………………………………………………2分
∴, …………………………………………3分
=………4分
令,在 时,,
∴在单调递增, ………………5分
图象的对称轴,抛物线开口向上
①当即时, …………………………………6分
②当即时, ………………………………7分
③当即时,
…………………8分
,
所以在区间上单调递增 ………………………9分
∴时,
①当时,有,
,
得,同理, …………………10分
∴ 由的单调性知 、
从而有,符合题设. ………………11分
②当时,,
,
由的单调性知 ,
∴,与题设不符 ……………12分
③当时,同理可得,
得,与题设不符. ……………………13分
∴综合①、②、③得 ……………14分
说明:各题如有其它解法,按照相应的步骤给分.
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com