精英家教网 > 高中数学 > 题目详情
(2012•芜湖三模)如图,将边长为1,2,3的正八边形叠放在一起,同一边上相邻珠子的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是
341
341
分析:各个正八边形上的珠子分别有8,2×8,3×8,…10×8 个,把它们相加,再减去多计算的珠子数3×9+2×8+2×7+2×6+…+2×1,即得所求.
解答:解:边长为1,2,3…10 的正八边形叠放在一起,则各个正八边形上的珠子分别有8,2×8,3×8,…10×8 个,
其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…
有2个珠子被重复计算了2次,
故不同的珠子个数为( 8+2×8+3×8+…+10×8 )-[3×9+2×8+2×7+2×6+…+2×1]=440-(27+2×
8×9
2
)=341,
故答案为 341.
点评:本题主要考查归纳推理,由几个特殊的例子,分析其结构特征,总结出一般规律,等差数列的求和公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•芜湖三模)若方程e2x+ex-a=0有实数解,则实数a的取值范围是
(0,+∞)
(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖三模)若存在区间M=[a,b](a<b)使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列4个函数:
①f(x)=ex     ②f(x)=x3 ③f(x)=cos
πx2
     ④f(x)=lnx+1
其中存在稳定区间的函数有
②③
②③
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖三模)在等比数列{an}中,已知a6-a4=24,a3a5=64,则{an}前8项的和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖三模)设实数x,y满足
x-y-2≤0
x+2y-5≥0
y-2≤0
u=
x+y
x
的取值范围是(  )

查看答案和解析>>

同步练习册答案