精英家教网 > 高中数学 > 题目详情
(2012•许昌二模)设a≥0,函数f(x)=[x2+(a-3)x-2a+3]exg(x)=2-a-x-
4x+1

( I)当a≥1时,求f(x)的最小值;
( II)假设存在x1,x2∈(0,+∞),使得|f(x1)-g(x2)|<1成立,求a的取值范围.
分析:( I)求出f(x)的导数,利用导数求出函数的最值问题;
( II)根据第一问已经知道f(x)的值域,需要分两种情况:a>1或0<a<1,根据|f(x1)-g(x2)|<1求出a的范围;
解答:解:(Ⅰ)∵f'(x)=[x2+(a-1)x-a]ex=(x+a)(x-1)ex
∵a≥1,
∴x∈(-∞,-a)时,f(x)递增,x∈(-a,1)时,f(x)递减,x∈(1,+∞)时,f(x)递增,
所以f(x)的极大值点为x1=-a,极小值点为x2=1,
而f(1)=(1-a)e≤0,f(-a)=
a+3
ea
>0

由于,对二次函数y=x2+(a-3)x-2a+3,对称轴为x=
3-a
2
>-a
,y(-a)=a+3>0,
∴当x≤-a时,y=x2+(a-3)x-2a+3>0,
∴f(x)>0.             
当x>-a时,f(x)的最小值为f(1)=(1-a)e.
所以,f(x)的最小值是(1-a)e.                                     
( II)由(Ⅰ)知f(x)在(0,+∞)的值域是:
当a≥1时,为[(1-a)e,+∞),当0<a<1时,为(0,+∞).                
g(x)=2-a-x-
4
x+1
在(0,+∞)的值域是为(-∞,-a-1),
所以,当a≥1时,令(1-a)e-(-a-1)<1,并解得a>
e
e-1

当0<a<1时,令0-(-a-1)<1,无解.
因此,a的取值范围是a>
e
e-1
点评:此题考查利用导数研究函数的单调性,比较简单,但是第二问涉及恒成立的问题,就比较复杂,考查了分类讨论思想的应用,关于导数求最值的应用在高考是一个热点问题,每年都会考一道大题,难度中等;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌二模)在直角坐标系xOy中,直线l的参数方程为
x=3-
2
2
t
y=
5
+
2
2
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的圆心到直线l的距离;
(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,
5
),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)设F为抛物线C:y2=2px(p>0)的焦点,过F且与抛物线C对称轴垂直的直线被抛物线C截得线段长为4.
(1)求抛物线C方程.
(2)设A、B为抛物线C上异于原点的两点且满足FA⊥FB,延长AF、BF分别抛物线C于点C、D.求:四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)若椭圆
x2
m
+
y2
8
=1
的焦距是2,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌二模)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)设AB=1,求多面体ABCDE的体积.

查看答案和解析>>

同步练习册答案