精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)证明:函数在区间上存在唯一的极大值点;

(Ⅲ)证明:函数有且仅有一个零点.

【答案】(Ⅰ)(Ⅱ)证明见解析(Ⅲ)证明见解析

【解析】

(Ⅰ)求导,从而解得切线的切率,根据点斜式即可求得结果;

(Ⅱ)根据的单调性,即可容易求证;

(Ⅲ)根据的正负,判断函数的单调性,即可容易证明.

(Ⅰ)因为

所以

又因为

所以切线方程为

即:.

(Ⅱ)证明:因为上单调递减,

所以上单调递减,

所以在内有且仅有一个实数,使得=0

并且当时,

时,

所以在区间上有唯一的极大值点.

(Ⅲ)证明:当时,

此时.

时,

此时.

时,

因为,所以内单调递增.

因为

所以上有且仅有一个零点.

综上所述,函数有且仅有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点,动点满足,点为线段的中点,抛物线上点的纵坐标为.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,椭圆上一点的距离之和为4.过点作直线的垂线交直线于点

1)求椭圆的标准方程;

2)试判断直线与椭圆公共点的个数,并说明理由;

3)直线与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)若当恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】单位正方体内部或边界上不共面的四个点构成的四面体体积的最大值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为的直线过抛物线的焦点,且与抛物线交于两点.

1)设点在第一象限,过作抛物线的准线的垂线,为垂足,且,直线与直线关于直线对称,求直线的方程;

2)过且与垂直的直线与圆交于两点,若面积之和为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)若,求函数在区间上的最大值;

2)若,关于的方程有且仅有一个根, 求实数的取值范围;

3)若对任意,不等式均成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象在处的切线为.为自然对数的底数).

1)求的值;

2)当时,求证:

3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案