精英家教网 > 高中数学 > 题目详情
2.已知sin(α-$\frac{π}{4}$)=$\frac{1}{3}$,则cos(α+$\frac{5π}{4}$)的值等于(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2\sqrt{2}}{2}$D.$\frac{2\sqrt{2}}{3}$

分析 利用同角三角函数关系式的应用及诱导公式化简所求后,结合已知即可得解.

解答 解:∵sin(α-$\frac{π}{4}$)=$\frac{1}{3}$,
∴cos(α+$\frac{5π}{4}$)=cos(α+$\frac{π}{4}+π$)=-cos($α+\frac{π}{4}$)=-sin[$\frac{π}{2}$-($α+\frac{π}{4}$)]=-sin($\frac{π}{4}$-α)=sin(α-$\frac{π}{4}$)=$\frac{1}{3}$.
故选:B.

点评 本题主要考查了同角三角函数关系式的应用及诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知$g(x)=1-2x,f[g(x)]=\frac{{1-{x^2}}}{x^2}(x≠0)$,则$f(\frac{1}{3})$等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,a1=2,a2=$\frac{5}{2}$,则a4的值为(  )
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角α的终边经过点(-3,4),则$sin({α+\frac{π}{4}})$的值(  )
A.$\frac{\sqrt{2}}{5}$B.-$\frac{\sqrt{2}}{5}$C.$\frac{\sqrt{2}}{10}$D.-$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂生产的产品A的直径均位于区间[110,118]内(单位:mm).若生产一件产品A的直径位于区间[110,112),[112,114),[114,116),[116,118]内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品A中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
(1)求a的值,并估计该厂生产一件A产品的平均利润;
(2)现用分层抽样法从直径位于区间[112,116)内的产品中随机抽取一个容量为5的样
本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间[114,116)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.根据历年气象资料统计,蚌埠地区五月份刮东风的概率是$\frac{4}{15}$,既刮东风又下雨的概率是$\frac{7}{30}$,那么在“五月份刮东风”的条件下,蚌埠地区五月份下雨的概率是(  )
A.$\frac{1}{30}$B.$\frac{1}{2}$C.$\frac{56}{900}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,它们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)(方块4用4′表示)分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;
(2)甲、乙约定,若甲抽到的牌的牌面数字比乙的大,则甲胜,乙负,此游戏是否公平?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数y=f(x)的对称轴为x=1,且f(0)=6,f(-1)=12.
(1)求f(x)的解析式;
(2)若函数f(x)的定义域为[m,m+1],f(x)的值域为[12,22],求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={-1,1},N={x|ax=1}若N⊆M,则实数a的值为(  )
A.-1B.1C.-1或1D.0或-1或1

查看答案和解析>>

同步练习册答案